The Radial-Hedgehog Solution in Landau–de Gennes’ theory

نویسنده

  • Apala Majumdar
چکیده

We study the radial-hedgehog solution on a unit ball in three dimensions, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a globally stable configuration in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. We use a combination of Ginzburg-Landau techniques, perturbation methods and stability analyses to study the qualitative properties of the radial-hedgehog solution, the structure of its defect core, its stability and instability with respect to biaxial perturbations. Our results complement previous work in the field, are rigorous in nature, give information about the role of geometry, elastic constants and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial symmetry on three-dimensional shells in the Landau-de Gennes theory

We study the radial-hedgehog solution on a three-dimensional (3D) spherical shell with radial boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. We prove that the radial-hedgehog solution is the unique minimizer of the Landaude Gennes energy in two separate regimes: (i) for thin shells when the temperature is below the critical nematic supercooling temperature ...

متن کامل

Some properties of the nematic radial hedgehog in Landau-de Gennes' theory

In the Landau-de Gennes theoretical framework of a Q-tensor description of nematic liquid crystals, we consider a radial hedgehog defect with strong anchoring conditions in a ball B ⊂ R. We show that the scalar order parameter is monotonic, and we prove uniqueness of the minimizing hedgehog below the spinodal temperature T ∗.

متن کامل

Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals

We investigate stability properties of the radially symmetric solution corresponding to the vortex defect (so called “melting hedgehog”) in the framework of the Landau de Gennes model of nematic liquid crystals. We prove local stability of the melting hedgehog under arbitrary Q-tensor valued perturbations in the temperature regime near the critical supercooling temperature. As a consequence of ...

متن کامل

A Landau-de Gennes theory for hard colloidal rods: Defects and tactoids.

We construct a phenomenological Landau-de Gennes theory for hard colloidal rods by performing an order parameter expansion of the chemical-potential dependent grand potential. By fitting the coefficients to known results of Onsager theory, we are not only able to describe the isotropic-nematic phase transition as function of density, including the well-known density jump, but also the isotropic...

متن کامل

On the local instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes free-energy models

We consider radial hedgehog equilibrium configurations of the tensor order parameter in spherical droplets of nematic liquid crystals modeled by free energies of Landau-de Gennes type. We show that such configurations must cease to be metastable at sufficiently low temperatures in droplets of sufficiently large radii for all but a very limited range of elastic-constant ratios, which are very ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010